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SUMMARY 

A boundary value collocation procedure applied t o  t h e  W i l l i a m s  s t r e s s  
function w a s  employed t o  determine t h e  e l a s t i c  s t r e s s  d i s t r ibu t ion  i n  t h e  im- 
mediate v i c i n i t y  of t h e  t i p  of an edge crack i n  a f ini te-width specimen sub- 
jected t o  uniform t e n s i l e  loading. This type of single-edge-notch specimen i s  
p a r t i c u l a r l y  su i tab le  f o r  determination of plane s t r a i n  f r a c t u r e  toughness 
values. The ana ly t ica l  r e s u l t s  a r e  expressed i n  such a way t h a t  t h e  s t r e s s  
i n t e n s i t y  f a c t o r  may be determined from known conditions of specimen geometry 
and loading. 

A s  t h e  crack length decreased, t h e  r e s u l t s  obtained by t h e  col locat ion 
procedure approached those derived from a closed solut ion f o r  an edge crack i n  
a semi- inf ini te  p la te .  Over a range of r a t i o s  of crack length t o  specimen 
width between 0.15 and 0.40 t h e  col locat ion solut ion yielded r e s u l t s  i n  very 
good agreement with those derived from experimental compliance measurements. 

INTRODUCTION 

A method f o r  calculat ing t h e  s t r e s s  d i s t r i b u t i o n  i n  a t e s t  specimen con- 
ta in ing  a single-edge crack (sharp notch) and subjected t o  a uniform t e n s i l e  
load i s  described herein. The r e s u l t s  a r e  p a r t i c u l a r l y  useful  i n  determining 
s t r e s s  i n t e n s i t y  f a c t o r s  K f o r  given conditions of load and geometry and 
therefore  permit t h e  use of t h e  single-edge-notch specimen i n  f r a c t u r e  tough- 
ness t e s t i n g .  

The ASTM Special  Committee on Fracture Testing of High Strength Metall ic 
Materials issued a s e r i e s  of reports  describing recent developments i n  f r a c t u r e  
toughness t e s t i n g  ( r e f s .  1 t o  4 ) .  It has been shown t h a t  the magnitude of the  
e l a s t i c  stress f i e l d  i n  the  immediate v i c i n i t y  of a crack but beyond the  crack 
t i p  p l a s t i c  zone may be characterized by a s ingle  parameter K,  the  s t r e s s  
i n t e n s i t y  fac tor  (refs. 1 and 5) .  For any given mater ia l  a charac te r i s t ic  
value K, 
t o  t h e  onset of rapid f rac ture .  Like other mechanical properties,  K, i s  

of t h e  s t r e s s  i n t e n s i t y  f a c t o r  i s  assumed t o  ex is t  that  corresponds 



dependent on t h e  s t r a i n  ra te ,  t h e  temperature, and t h e  t e s t i n g  d i rec t ion .  I n  
t h e  case of sheet and p l a t e  mater ia ls  it i s  a l s o  dependent on t h e  thickness.  
The value of may be determined from tes ts  on specimens containing sharp 
notches or cracks, provided t h a t  s u i t a b l e  expressions are ava i lab le  t h a t  give 
t h e  s t r e s s  i n t e n s i t y  f a c t o r  i n  terms of t h e  specimen geometry and applied loads 
a t  f r ac tu re  i n s t a b i l i t y .  

K, 

Approximate solut ions f o r  K exist i n  closed form f o r  a number of speci-  
men designs symmetrically notched with respect to t h e  t e n s i l e  load ax i s  
( r e f s .  5 t o  9 ) .  The single-edge-notch tens ion  specimen appears to be more e f -  
f i c i e n t ,  however, than symmetrically notched specimens with respect both to t h e  
material and t o  t h e  loading capaci ty  required ( r e f .  10). For t h i s  reason, t h e  
single-edge-notch specimen may be of considerable importance i n  t h e  determina- 
t i o n  of K, 
sect ions a r e  an inherent requirement of t h e  t e s t .  Recent, very ca re fu l  experi-  
mental compliance measurements on t h e  single-edge-notch specimen ( r e f .  10) pro- 
vide values of s t r a i n  energy r e l ease  r a t e s  as a funct ion of crack length f rom 
w'hich values of K may be derived. An ana ly t i ca l  so lu t ion  i s  desirable ,  how- 
ever, as an independent check on t h e  experimental procedure; it a l s o  has t h e  
advantage t h a t  t h e  influence of ce r t a in  geometrical parameters, such as t h e  
r a t i o  of height t o  width 
tedious experimental measurements. Furthermore, t h e  method of obtaining an 
ana ly t i ca l  solut ion i s  appl icable  to a l l  combinations of bending and tension 
applied t o  a single-edge-notch specimen. 

f o r  plane s t r a i n  crack propagation where r e l a t i v e l y  l a rge  cross  

V/W, may be rap id ly  determined without r e so r t  to 

An ana ly t i ca l  solut ion t o  t h e  s t r e s s  d i s t r ibu t ion  i n  t h e  single-edge- 
notch tension specimen i s  obtained herein by a boundary value col locat ion pro- 
cedure applied t o  t h e  W i l l i a m s  s t r e s s  function (ref. ll), which i s  known to 
s a t i s f y  t h e  boundary conditions along an edge crack. 
t h a t  permits expression of s t r e s s  i n t e n s i t y  f ac to r s  i n  terms of t h e  measured 
quan t i t i e s  of load and specimen dimensions. In  addition, t h e  influence of t h e  
end e f f ec t  on t h e  s t r e s s  i n t e n s i t y  f ac to r  i s  determined. The end e f f ec t  de- 
r ives  from t h e  f i n i t e  dis tance between t h e  crack and t h e  uniformly loaded 
boundary, expressed as  V/W. A comparison i s  made between t h e  present ana ly t i -  
c a l  r e s u l t s  and a closed so lu t ion  obtained by Wigglesworth ( r e f .  1 2 )  f o r  an 
edge crack i n  a semi- inf in i te  p la te .  
terms of t h e  s t r e s s  i n t e n s i t y  f ac to r  i s  compared with experimental r e s u l t s  ob- 
ta ined  by other  inves t iga tors  f o r  t h i s  specimen with s t r a i n  energy re lease  r a t e  
(compliance measurement ) experiments. 

The r e s u l t s  a r e  i n  a form 

Finally,  t h e  col locat ion solut ion i n  

SYMBOLS 

a crack length i n  single-edge-notch specimen, in .  

coef f ic ien ts  of W i l l i a m s  s t r e s s  function dn 

E Young' s modulus, p s i  

s t r a i n  energy re lease  r a t e  with crack extension; o r  crack extension 
force, in.  -lb/sq in .  

99 
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K 

v 

W 

x, Y 

s t r e s s  i n t e n s i t y  f ac to r  of e l a s t i c  s t r e s s  
f i e l d  i n  v i c i n i t y  of border of crack, 
p s i  

load per un i t  thickness, lb/ in .  

angular pos i t ion  coordinates re fer red  t o  
crack t i p  

d is tance  (height)  between crack plane and 
loca t ion  of uniform s t ress ,  in .  

specimen width, in .  

coordinate axes with or ig in  a t  crack t i p ,  
p a r a l l e l  and perpendicular, respectively,  
t o  crack plane 

uniform t e n s i l e  s t r e s s  applied t o  specimen, 
p s i  

s t r e s s  i n  x- and y-directions, p s i  0yJ *xy 

X s t r e s s  function 

uo - 10,oOO psi 

o0 - 10,oOO psi 

Figure 1. - Specimen geometry 
and loading assumed for 
collocation solution. 

METHOD 

The method of analysis  cons is t s  i n  f inding a s t r e s s  function X s a t i s f y -  
ing t h e  biharmonic equation 
number of s t a t ions  along t h e  boundaries of t h e  single-edge-notch specimen shown 
i n  f igu re  1. For t h e  present purposes use i s  made of t h e  W i l l i a m s  s t r e s s  func- 
t i o n  ( r e f .  11) w i t h  t h e  correct ion of a typographical e r ro r  i n  t h a t  reference: 

$X = 0 and t h e  boundary conditions a t  a f i n i t e  

m 

2n - 3 [- cos (n - ;)e + 2n + cos ( n  + $4 
n=l, 2, . . . 

+ ( - 1) nd 2nrn+1 [- cos(n - i cos(n + 

Because of symmetry ( f i g .  1) only even terms of t h e  s t r e s s  function a r e  con- 
sidered. The s t r e s ses  i n  terms of X obtained by p a r t i a l  d i f f e ren t i a t ion  a r e  
as follows: 

3 



2 - a2x - a2x 2 a2x s i n  e cos e + ax s i n  e a y - - - - c o s 8 - 2  ZEF r z r  2 ax2 a, 
ax s i n  e cos 0 a% sin20 

+ 2  -!--- z r  2 a02 r 2 

The W i l l i a m s  s t r e s s  funct ion i s  an Airy s t r e s s  function, which, besides satis- 
fying t h e  biharmonic equation, a l s o  s a t i s f i e s  t h e  boundary conditions along t h e  
crack surface, namely, t h a t  t h e  normal and shearing s t r e s s e s  be zero. Thus, 
when 8 = %T, equations (1) and ( 2 )  give 
boundary requirements on t h e  s t r e s s  function f o r  t h e  specimen having t h e  geom- 
e t r y  and t r a c t i o n s  shown i n  f igu re  1 a r e  as follows: 

cry = 0, rxy = 0. The remaining 

Along boundary A -, B: 

ax x = o  Y a = O  X 

Along boundary B -, C: 

Along boundary C -+ D: 

Because of symmetry with respect t o  t h e  crack plane ( f ig .  1) only half  t h e  
specimen need be considered. 

For t h e  purpose of determining t h e  s t r e s s  i n t e n s i t y  f a c t o r  as defined i n  

d l  of t h e  
reference 13, which character izes  t h e  s t r e s s  d i s t r ibu t ion  i n  t h e  immediate 
neighborhood of t h e  crack t i p  (r --* 0), only t h e  f irst  coef f ic ien t  

4 



W i l l i a m s  s t r e s s  function i s  necessary, s ince t h i s  term i s  dominant. A s  shown 
l a t e r ,  d l  i s  proportional t o  t h e  s t r e s s  i n t e n s i t y  f a c t o r  K. Values of d l  
as well  as of t h e  other coef f ic ien ts  a r e  obtained by sa t i s fy ing  t h e  boundary 
conditions (eq. 
given boundary f o r  a specimen with the  geometry shown i n  f igure  1 t h a t  is  
subjected t o  a uniform stress of 10,000 p s i  ac t ing  a t  a distance 
crack plane. Computations were made f o r  several  r a t i o s  of crack length t o  
specimen width a / W  between 0.04 and 0.5 and f o r  values of V/W ranging from 
0.5 t o  1.5. 

(3 ) )  at a f i n i t e  number of s t a t i o n s  equally spaced along a 

V from t h e  

The col locat ion procedure requires a matrix solut ion of twice as many 
equations as t h e  number of boundary s t a t i o n s  selected f o r  each combination of 
t h e  independent var iables .  This problem w a s  programed f o r  a d i g i t a l  computer 
with t h e  use of double precision ari thmetic (16 s ign i f icant  f igures) .  

In  t h i s  solution, t h e  number of boundary s t a t i o n s  i s  increased u n t i l  t h e  
f i r s t  matrix coeff ic ient  d l  converges t o  a s u f f i c i e n t l y  s t a b l e  value. Fig- 
ure 2, f o r  example, shows t h e  f irst  matrix coeff ic ient  as a function of t h e  

Ratio of height to width at 
which uniform loading 
is assumed to occur, $1. 0.6059 

~ 23 

Number of boundary stations 

Figure 2. - First matrix coefficient as function of number of boundary stations. 
Tensile stress applied to specimen, 10,OOO psi: specimen width, 1 inch; ratio 
of crack length to specimen width, 1/3. 

number of boundary sta- 
t ions f o r  configurations 
with several  V/W r a t i o s  
at a value of a/w of 
1/3. The var ia t ion  i n  
t h e  f irst  matrix coef f i -  
c ien t  i s  not more than 
+1 percent when t h e  num- 
ber of boundary s t a t i o n s  
i s  increased from 
11 t o  23. 

The s t ress-funct ion 
values at 50 s t a t i o n s  
along t h e  boundary were 
computed f o r  several  
geometries with a l l  dn 
coeff ic ients .  These 
values were i n  good 
agreement with t h e  pre- 
scribed values. The 
s t ress-funct ion deriva- 
t i v e  normal t o  t h e  bound- 
ary, however, showed per- 
turbat ions near t h e  
corners of t h e  specimen. 

The e f fec t  of t h i s  var ia t ion  i n  terms of s t r e s s  d i s t r i b u t i o n  throughout t h e  
specimen could be determined only by addi t iona l  computation. This addi t ional  
e f f o r t  d id  not appear j u s t i f i e d  s ince t h e  first matrix coeff ic ient  was,  f o r  
p r a c t i c a l  purposes, insens i t ive  t o  these  perturbations.  

5 



RESULTS 

S t re s s  In t ens i ty  Factors  

The s t r e s s  i n t e n s i t y  f a c t o r  
e f f i c i e n t  of t h e  W i l l i a m s  s t r e s s  function. The expression f o r  t h e  s t r e s s  i n  
t h e  y-direct ion i n  t h e  immediate v i c i n i t y  of t h e  crack t i p  is  obtained from 
t h e  dominant term as Tollows: 

K may be derived i n  terms of t h e  f irst  co- 

8 
2 

+ s i n  - s i n  

The expression f o r  IS 

s t r e s s  ana lys i s ,  i s  as follows: 

given i n  reference 1, based on t h e  Westergaard crack 
Y 

2 2 30) 2 
8 cos (1 + s i n  - s i n  - K IS = -  

JS 

(4) 

Thus 

Ratio of crack length to specimen width, alW 

Figure 3. - Collocation results of a plot of dimensionless 
parameter against ratio of crack length to specimen 
width i n  single-edge-notch specimen. 

A s  shown i n  f igu re  2, s m a l l  o sc i l l a t ions  
sometimes occur i n  t h e  f irst  matrix co- 
e f f i c i e n t .  For t h i s  reason s t r e s s  
i n t e n s i t y  f ac to r s  were computed with 
values of dl averaged from 1 1 t o  23 
boundary points  . 

For purposes of f r ac tu re  toughness 
t e s t i n g  t h e  r e s u l t s  o f  t h e  col locat ion 
procedure a r e  conveniently expressed i n  
t h e  form of a dimensionless parameter 
involving K and t h e  measured quan t i t i e s  
as  a funct ion of a/W ( r e f .  10). Thus, 

where P i s  t h e  load per un i t  thickness .  
A s  discussed l a t e r ,  t h i s  form i s  usefu l  
f o r  a comparison of t h e  ana ly t i ca l  re-  
s u l t s  with experimental compliance c a l i -  
b ra t ion  data.  A curve derived from 
equation (3) r e l a t i n g  K ~ W / P ~  t o  a/w 
i s  given i n  f igu re  3. 
t o  any V/W value grea te r  than about 
0.8 (see f i g .  4 ) .  

This curve appl ies  

6 



Influence of End Effects  

A s  an a i d  t o  optimizing t h e  specimen design, calculat ions were made t o  
show how close t h e  assumed pos i t ion  of t h e  uniformly loaded boundary could be 
t o  t h e  crack plane without affect ing t h e  s t r e s s  i n t ens i ty  fac tor .  
value of t h e  posit ion,  of course, i s  a funct ion of t h e  specimen width, 
and expressing t h e  f i rs t  matrix coef f ic ien t  as a function of t h e  r a t i o  of 
height t o  width (see f ig .  1, p. 3) i s  convenient f o r  various values of a/w. 
According t o  f igu re  4, t h e  f irst  matrix coef f ic ien t  at 
0.15 and 0.5 i s  e s s e n t i a l l y  constant f o r  r a t i o s  of height t o  width 
g rea t e r  than about 0.8. 

For a given 
a / W  

a / W  r a t i o s  between 
V/W 

- 
3, 000 

.5  . 7  .9  1.1 1.3 
Ratio of height to width, VIW 

Figure 4. - First matrix coefficient as function of ratio of height to width for various 
ratios of crack length to specimen width. Tensile stress applied to specimen, 
10,OOO psi: specimen width, 1 inch. 

I n  a p r a c t i c a l  t e s t  specimen t h e  means by which load i s  applied introduces 
nonuniformly s t ressed  regions a t  t h e  ends of t h e  specimen. The ac tua l  specimen 
length must therefore  exceed t h e  minimum length determined from f igu re  4. 
t h e  case of a pin-loaded specimen, f o r  example, t h e  optimum r a t i o  of t o t a l  
length t o  width i s  about 4 (ref. 10). 

In  

7 



DISCUSSION OF RESULTS 

Comparison with Wigglesworth Solution . 
A check on t h e  v a l i d i t y  of t h e  present so lu t ion  can be obtained by com- 

parison with t h a t  reported by Wigglesworth ( r e f .  1 2 )  f o r  an edge crack i n  a 
semi- inf ini te  plate .  These two solut ions should converge as t h e  crack length 
tends t o  zero. In  t h e  M e d i a t e  v i c i n i t y  of t h e  crack t h e  f irst  term of t h e  
Wigglesworth so lu t ion  predominates, and 5 may be expressed i n  terms of t h e  
coordinate system shown i n  f i g u r e  1 (p. 3) as follows: Y 

This equation may be compared with t h e  corresponding expression obtained by t h e  
present met hod: 

+ s i n  - s i n  - 
2 

e 
2 2 

5 =  Jr (4) 

where t h e  f irst  matrix coef f ic ien t  dl depends on 50 and t h e  specimen dimen- 
sions.  The respect ive values of i n  any d i rec t ion  near t h e  crack t i p  may 
be compared by considering a single-edge-notch specimen of un i t  width. For t h e  
same uniform s t r e s s  i n  both cases. t h e  r a t i o  of 577 obtained from t h e  
Wigglesworth solut ion (eq. (8) )  t o  t h a t  computed f$om equation (4)  should ap- 

\ 
\ 

8 

\ 
\ 

\ 
\ 

\ 
\ 

8 
Crack length, . 

Figure 5. - Comparison of stress ratios in immediate vicinity of crack tip obtained by collocation 
solution and solution of reference 12. 

proach 1 as t h e  crack length decreases. 
i n  accordance with t h i s  behavior. 

The r e s u l t s  presented i n  f igu re  5 a r e  

Comparison with Experimental Results 

Two experimental compliance ca l ibra t ions  of single-edge-notch specimens 

8 
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loaded i n  tension a r e  avai lable  f o r  comparison, t h e  e a r l i e r  by Sullivan 
( r e f .  14)  and a more recent one by Srawley, Jones, and Gross ( r e f .  10) .  The 
design of t h e  specimen of reference 14  w a s  loaded through pins separated by a 
distance l e s s  than twice t h e  width, which introduced la rge  end ef fec ts  tha t  
a r e  not accounted f o r  i n  t h e  ana ly t ica l  solution. The specimen used i n  re fer -  
ence 10 w a s  of suf f ic ien t  length t h a t  end e f f e c t s  were negligible,  since t h e  
compliance measurements were made over a gage length of 8 inches on a specimen 
3 inches wide t h a t  w a s  loaded through pins 10 inches apart .  The suff ic iency of 
t h i s  gage length w a s  es tabl ished by preliminary experiments. For t h i s  reason 
b e t t e r  agreement with t h e  ana ly t ica l  r e s u l t s  i s  t o  be expected from t h e  experi- 
ments of reference 10 than from those of reference 14. Furthermore, as dis- 
cussed in  reference 10, those data  a r e  expected t o  be more precise  than t h e  
da ta  of reference 1 4  because of differences i n  specimen s i z e  and measurement 
techniques . 

The experimental compliance procedure gives r e s u l t s  i n  terms of t h e  s t r a i n  
energy release r a t e  g. 
9 
For the  purposes of comparing t h e  ana ly t ica l  with t h e  experimental r e s u l t s  t h e  
most reasonable procedure appears t o  be a conversion on t h e  plane s t r e s s  bas i s .  
Thus, 

The correct procedure f o r  converting these  values of 
t o  s t r e s s  i n t e n s i t y  f a c t o r s  i s  not yet completely s e t t l e d  (see r e f .  10). 

o r  i n  terms of experimentally measured quant i t ies ,  

I L 

where i s  determined by experimental compliance procedures and P i s  the  
load per u n i t  specimen thickness. 

Ratio of 
crack length 
t o  specimen 

width, 
a/w 

I 

0.05 
.10 
.15 
.20 
.25  
.30 
.35 
.40  
. 4 5  
.50 

Dimen s ion le  s s paramet e r  , 
K2W/P2 

Fxperiment a1 
r e s u l t s  

Ref. 10 

0.314 
.556 
.816 

1.180 
1 .735  
2 .571  
3.775 
5.436 
7 .641  

10.477 

Ref. 1 4  

0.35 
.65  

1.00 
1 . 4 0  
1 . 9 7  
2.80 
4 .20  
6 .18  
8 . 9 0  

12 .50  

Collocat ion 
r e s u l t s  

0.204 
.445 
.758 

1.180 
1.768 
2.603 
3.813 
5.596 

12.399 
a. 276 

The comparison between experi- 
mental and ana ly t ica l  r e s u l t s  i s  
shown i n  t h e  table .  A s  might be 
expected from the  foregoing discus- 
s ion of t h e  compliance ca l ibra t ion  
experiments, t h e  r e s u l t s  given i n  
reference 14 are  consis tent ly  high- 
e r  than e i t h e r  those obtained by 
t h e  present collocation solut ion or 
those reported i n  reference 10. I n  
contrast ,  very good agreement be- 
tween t h e  a n a l y t i c a l  solut ion and 
t h e  data  of reference 10 i s  noted 
f o r  values of a / W  between 0.15 
and 0.40. The differences between 
these  two s e t s  of r e s u l t s  at t h e  
lower values of a / W  are  probably 
associated with uncer ta in t ies  i n  

9 
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t h e  lower range of t h e  experimental data. For t h e  a / W  values above 0.4, d i f -  
ferences due to bending of t h e  experimental compliance specimen, which are not 
taken i n t o  account by t h e  ana ly t i ca l  solution, become important. This bending 
decreases t h e  eccen t r i c i ty  of loading with respect to t h e  uncracked section, 
and t h e  compliance f o r  a given slot length i s  therefore  s l i g h t l y  less than if  
no bending took place. 

SUMMARY OF RESULTS 

The r e s u l t s  of an a n a l y t i c a l  inves t iga t ion  of t h e  stress i n t e n s i t y  fac-  
tors for a single-edge-notch tens ion  specimen obtained by a boundary value 
col locat ion procedure applied to t h e  W i l l i a m s  stress funct ion are as follows: 

1. The values of t h e  s t r e s s  i n t e n s i t y  f a c t o r  were independent of t h e  d i s -  
tance between t h e  uniformly loaded cross sec t ion  and t h e  notch plane provided 
t h a t  t h i s  d i s tance  was grea ter  than 80 percent of t h e  width. 

2. A t  s m a l l  r a t i o s  of crack length to specimen width t h e  present r e s u l t s  
were i n  good agreement with a closed solut ion obtained f o r  an edge crack i n  a 
semi- inf ini te  p la te .  

3. When t h e  a n a l y t i c a l  r e s u l t s  were expressed i n  appropriate dimension- 
l e s s  form, very good agreement was obtained with comparable r e s u l t s  obtained 
from a highly accurate  experimental s t r a i n  energy re lease  rate determination. 

Lewis  Research Center 
National Aeronautics and Space Administrat ion 

Cleveland, Ohio, May 5, 1964 
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